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The free and forced vibration analyses of a uniform cantilever beam carrying
a number of spring}damper}mass systems with arbitrary magnitudes and
locations were made by means of the analytical-and-numerical-combined method
(ANCM). First of all, a method was presented to replace each &&spring}damper}
mass'' system by a massless equivalent &&spring}damper'' system with e!ective
spring constant k

e+
and e!ective damping coe$cient C

e+
so that the ANCM is

available for the title problem. Next, the equation of motion for the &&constrained''
beam (with spring}damper}mass systems attached) was derived by using the
natural frequencies and normal mode shapes of the &&unconstrained'' beam (without
carrying any attachments) incorporating the expansion theorem. Finally, the
eigenvalues and the forced vibration responses of the &&constrained'' beam were
determined by conventional numerical methods. To con"rm the reliability of the
presented theory, all the numerical results obtained from the ANCM were
compared with the corresponding ones obtained from the conventional "nite
element method (FEM) and good agreement was achieved. The in#uence of the
damping magnitude of each spring}damper}mass system on the eigenvalues and
the forced vibration responses of the constrained beam was studied. Because the
order of the overall property matrices for the equation of motion of the constrained
beam derived from the ANCM is much lower than that from the conventional
FEM, the storing memory and the CPU time required by the ANCM are much less
than those required by the FEM.

( 2000 Academic Press
1. INTRODUCTION

The engineers in the "elds of mechanism, naval architecture or aeronautics, are
often confronted with the problem of mounting various equipment (such as engine,
radar, motor or oscillator) on the structural members. Hence, determination of
natural frequencies of the beams or plates carrying various concentrated elements
calls for the attention of a lot of researchers. The literature relating to the free
vibration analysis of various uniform beams or plates carrying various
concentrated elements (such as rigidly attached lumped masses, elastically mounted
point masses, translational springs and/or rotational springs) is abundant [1}9].
But research on the natural frequencies of a structural member carrying either
0022-460X/00/030549#30 $35.00/0 ( 2000 Academic Press
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single or multiple spring}damper}mass systems has not been carried out. Actually,
besides reference [10], where forced vibration instead of free vibration was studied,
only a few studies about the free vibration analysis of a uniform beam carrying
a single dashpot have been undertaken [11}14]. Hence, this paper aims at
presenting some information in this respect.

In theory, most of the approaches presented in references [1}9] may be used to
solve the free vibration problem of a beam or plate carrying any number of
concentrated elements. However, because of the complexity of the mathematical
expressions, only studies involving beams or plates carrying one or two
concentrated elements have been found in the literature. References [15}18] used
the analytical-and-numerical-combined method (ANCM) to solve the natural
frequencies and the corresponding mode shapes of a uniform beam or plate
carrying &&any number of '' concentrated elements. The purpose of this paper is to
try to apply the ANCM to the determination of free and forced vibration responses
for a uniform cantilever beam carrying a number of &&spring}damper}mass''
systems.

For convenience, a beam not carrying any attachments is called the
&&unconstrained'' beam and one that carries any number of spring}damper}mass
systems is called the &&constrained'' beam. In this paper, the equation of motion for
the constrained beam was derived by replacing each spring}damper}mass system
with an e!ective spring of constant k

e+
and an e!ective damper of coe$cient C

e+
,

and by using the natural frequencies and normal mode shapes of the unconstrained
beam incorporated with the expansion theorem. Since the constrained beam is
a damped system, its eigenvalue equation is in complex form. By equating the real
part on the left-hand side to that on the right-hand side of the equation of motion,
the "rst set of simultaneous equations will be obtained. Similarly, by equating the
imaginary parts on the both sides of the equation of motion, one will obtain the
second set of simultaneous equations. From either set of the simultaneous
equations, one may obtain the eigenvalues u6 of the constrained beam.

Since the e!ective spring constant k
e+

and the e!ective damper coe$cients C
e+

are
functions of the unknown eigenvalue and the latter is a complex number, &&two''
trial values (one for the real part and one for the imaginary part of the guessed
eigenvalue) are required in each iteration. To overcome the di$culty of guessing the
two trial values in every iteration, a relationship between the real part and
imaginary part of an eigenvalue was derived. Based on this relationship, one only
requires to guess &&one'' trial value in each iteration.

2. EQUATION OF MOTION FOR A UNIFORM BEAM WITH
A SPRING}DAMPER}MASS SYSTEM

If the e!ects of shear deformation and rotatory inertia are neglected, then the
equation of motion for a uniform beam carrying a spring}damper}mass system
(see Figure 1) is given by [3]

EI
L4y(x, t)

Lx4
#mN

L2y(x, t)
Lt2

"F
e
(t), (1)



Figure 1. A uniform cantilever beam carrying a spring}damper}mass system.
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where E is Young's modulus, I the moment of inertia of the cross-sectional area,
mN the mass per unit length of the beam, y(x, t) the transverse de#ection of the beam
at position x and time t, and F

e
(t) the interactive force between the spring}

damper}mass system and the beam.
The equation of motion for the spring}damper}mass system alone is given by

F
e
(t)"!m

e
zK t (t)"C

e
[zR t(t)!yR

e
(t)]#k

e
[zt(t)!y

e
(t)] (2)

or

m
e
zK t(t)#C

e
zR t(t)#k

e
zt(t)"C

e
yR
e
(t)#k

e
y
e
(t) (3)

where zt (t), zR t (t) and zK t(t) are the displacement, velocity and acceleration of the
concentrated mass m

e
with respect to its static equilibrium position (see Figure 1),

y
e
(t) and yR

e
(t) are the displacement and velocity of the uniform beam at the

attaching point located at x"x
e
, and C

e
and k

e
are the damping coe$cient and

spring constant of the spring}damper}mass system respectively.
According to the expansion theorem or the mode superposition method [19, 20],

the transverse displacement of the beam takes the form

y (x, t)"
n{
+
j/1

yN
j
(x)q

j
(t), (4)

where yN
j
(x) is the jth normal mode shapes of the unconstrained beam, q

j
(t) is the jth

generalized co-ordinate and n@ is the total number of modes considered. For the
natural frequencies and the corresponding normal mode shapes of an
unconstrained uniform cantilever beam, one may refer to reference [15].

From equation (4) one obtains the displacement of the beam at the position
x"x

e
to be

y
e
(t)"

n{
+
j/1
P

l

0

yN
j
(x) ) d(x!x

e
) dx q

j
(t), (5)

where yN
j
(x) ) d (x!x

e
) is the amplitude of y

e
(t) and d ( )) is the Dirac delta function.
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When the constrained beam performs the &&damped'' harmonic free vibration, one
has

q
j
(t)"

n{
+
j/1

qN
j
e(u6 R`*1u6 I) t (6)

where qN
j
is the amplitude of q

j
(t), u6

R
and u6

I
are respectively the real part and the

imaginary part of the eigenvalue, t is time and i1"J!1.
By substituting equation (6) into equation (5) gives

y
e
(t)"

n{
+
j/1

yN
j
(x

e
) ) qN

j
e(u6 R`*1u6 I) t, (7)

where

yN
j
(x

e
)"P

l

0

yN
j
(x) ) d (x!x

e
) dx.

From equations (3) and (7), one sees that the particular solution of zt(t) takes the
form

zt(t)"zN t
n{
+
j/1

qN
j
e(u6 R`*1u6 I) t, (8)

where zN t is the amplitude of zt(t).
From equations (8) and (7) one has

zR t(t)"zN t(u6 R#i1 u6
I
)

n{
+
j/1

qN
j
e(u6 R`*1u6 I) t

"(u6
R
#i1 u6

I
)zt(t), (9)

zK t(t)"zN t(u6 R#i1 u6
I
)2

n{
+
j/1

qN
j
e(u6 R`*1u6 I) t

"[(u6 2
R
!u6 2

I
)#i12u6

R
u6

I
]zt (t), (10)

yR
e
(t)"(u6

R
#i1 u6

I
)

n{
+
j/1

yN
j
(x)qN

j
e(u6 R`*1u6 I) t"(u6

R
#i1 u6

I
)y

e
(t). (11)

From equation (11) one obtains

i1 ) y
e
(t)"

1
u6

I

yR
e
(t)!A

u6
R

u6
I
B y

e
(t). (12)



BEAM CARRYING MASSES WITH DAMPERS 553
The substitution of equations (9)}(11) into equation (3) gives

zt(t)"
(C

e
u6

R
#k

e
)#i1C

e
u6

I
[m

e
(u6 2
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!u6 2
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e
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R
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e
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I
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y
e
(t). (13)

Substituting equations (10) and (13) into equation (2) yields

F
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e
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Substituting the value of i1 ) y
e
(t) de"ned by equation (12) into equation (14) gives
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where

k
e+
"!

E
1
G

1
#F

1
H

1
G2

1
#H2

1

#

F
1
G

1
!E

1
H

1
G2

1
#H2

1
A
u6

R
u6

I
B

"e!ective spring constant, (16a)
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E
1
"m

e
[(u6 2

R
!u6 2

I
)(C

e
u6

R
#k

e
)!2C

e
u6

R
u6 2

I
], (16c)

F
1
"m

e
[2u6

R
u6

I
(C

e
u6

R
#k

e
)!C

e
u6

I
(u6 2

R
!u6 2

I
)], (16d)

G
1
"m

e
(u6 2

R
!u6 2

I
)#C

e
u6

R
#k

e
, (16e)

H
1
"2u6

R
u6

I
m

e
#C

e
u6

I
, (16f )



Figure 2. The e!ect of the &&spring}damper}mass'' system of Figure 1 may be replaced by
a massless equivalent &&spring}damper'' system with e!ective spring constant k

e+
and e!ective

damping coe$cient C
e+

.
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From equation (15) one sees that the e!ect of the spring}damper}mass system as
shown in Figure 1 may be replaced by a massless equivalent &&spring}damper''
system with e!ective spring constant k

e+
and e!ective damping coe$cient C

e+
,

de"ned by equations (16a)}(16f) as shown in Figure 2.
It is noted that to replace each &&spring}damper}mass'' system by a massless

equivalent &&spring}damper'' system is the key point of this paper, since the ANCM
is available for the present problem only if equation (15) is satis"ed. Besides, the
e!ects of spring, damper and mass on the beam are all included in the e!ective
spring constant k

e+
and the e!ective damping coe$cient C

e+
. Hence, the eigenvalues

of a uniform beam carrying any number of dashpots may also be obtained by using
the formulation of this paper, since the last problem is the special case in which the
spring constant k

e
and the concentrated mass m

e
of each spring}damper}mass

system are equal to zero (i.e., k
e
"m

e
"0) and zt(t)"0. In such a special case, from

equation (2) one obtains

F
e
(t)"!C

e
yR
e
(t)"C

e+
) yR

e
(t), (17)

where

C
e+
"!C

e
. (17a)

Similarly, if the only concentrated element on the uniform beam is a linear spring
with spring constant k

e
, one has C

e
"m

e
"0 and zt(t)"0. For this special case,

equation (2) gives

F
e
(t)"!k

e
y
e
(t)"k

e+
) y

e
(t) (18)

where

k
e+
"!k

e
. (18a)

When equations (7) and (15) are introduced into equation (1), the
equation of motion for a uniform beam carrying a spring}damper}mass system
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takes the form
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Premultiplying both sides of equation (19) by yN
k
(x), integrating the resulting

expression over the whole length of the beam, l, and applying the orthogonality of
the normal mode shapes, one obtains

M
jj
qK
j
(t)#K

jj
q
j
(t)"N

jj
, j"1, 2,2, n@, (20)

where

M
jj
"P

l

0
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j
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j
(x) dx (21a)

K
jj
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l

0
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j
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R
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I
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e
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yN
k
(x

e
)yN

k
(x

e
)"P

l

0

yN
j
(x) yN

k
(x) ) d(x!x

e
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Since yN
j
(x) is a normal mode shape, equation (20) reduces to

qK
j
(t)#u2

j
q
j
(t)"N

jj
, j"1, 2,2, n@, (23)

where u
j
"JK

jj
/M

jj
"JK

jj
is the jth natural frequency of the unconstrained

beam.
The substitution of equations (6) and (21c) into equation (23) leads to
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e
)yN

k
(x

e
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or

u2
j
qN
j
!(k

e+
#u6

R
C

e+
)
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+
k/1

yN
k
(x

e
)yN

k
(x

e
)qN

j
!i1 (u6

I
C

e+
)

n{
+
k/1

yN
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e
)yN
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(x

e
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j

"!(u6 2
R
!u6 2

I
)qN

j
!i12u6

R
u6

I
qN
j
, j"1, 2,2, n@. (24b)

To equate the real parts and the imaginary parts on both sides of the last
equation, respectively, one has

u2
j
qN
j
!(k

e+
#u6

R
C

e+
)

n{
+
k/1

yN
k
(x

e
)yN

k
(x

e
)qN

j

"!(u6 2
R
!u6 2

I
)qN

j
, j"1, 2,2, n@ (for real parts) (25a)

and

(u6
I
C

e+
)

n{
+
j/1

yN
k
(x

e
)yN

k
(x

e
)qN

j

"2u6
R
u6

I
qN
j
, j"1, 2,2, n@ (for imaginary parts). (25b)

The eigenvalues of the constrained beam may be obtained from either equations
(25a) and (30) or equations (25b) and (30). To avoid confusion, the successive
derivation of the characteristic equation for the constrained beam from equation
(25b) is given in Appendix A.

Writing equation (25a) in a matrix form gives

[A]MqN
j
N"(u6 2

I
!u6 2

R
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j
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In the above expressions, the symbols M N, [ ] and vy represent the column
matrix, square matrix and diagonal matrix respectively.

Since k
e+

and C
e+

are functions of the unknowns u6
R

and u6
I
as shown in equations

(16a)}(16f ), one cannot obtain the eigenvalues u6
R
$i1 u6

I
from equation (26) by

means of the Jacobi method [21]; equation (26) is rewritten as

([A]!(u6 2
I
!u6 2

R
)[B])MqN

j
N"0. (28)

Non-trivial solution of equation (28) requires that

D[A]!(u6 2
I
!u6 2

R
)[B] D"0 (29)

which is the characteristic equation; its roots give the eigenvalues of the constrained
beam, u6

R
$i1 u6

I
. From equations (29), (15) and (16a)}(16f), one sees that the

frequency equation is a function of two unknowns u6
R

and u6
I
, hence two trial values

for u6
R

and u6
I

are required when cut and trial procedures were performed. It is
evident that guessing two trial values of u6

R
and u6

I
simultaneously for equations

(25a), (25b), (35a) or (35b) is very di$cult. To overcome this di$culty, the following
relationship between u6

R
and u6

I
was derived:

u6
jR
"!

f
j

J1!f2
j

u6
jI

, j"1, 2,2. (30)

The last expression was obtained from the free vibration curves and the
relationship between the damped natural frequency and the undamped one for
a single-degree-of-freedom (d.o.f) damped system [20, 23].

In equation (30) f
j
is the damping ratio associated with the jth mode shape of the

unconstrained beam and is de"ned by

f
j
"C*

j
/(2m*

j
u

j
), (31)

where C*
j

and m*
j

are the generalized damping coe$cient and generalized mass
given by (see Figure 3)

C*
j
"

r
+

t/1
P

l

0

yN
j
(x)C

e,t
yN
j
(x) ) d(x!x

e,t
) dx"

r
+

t/1

C
e,t

) yN 2
j
(x

e,t
), (32)

m*
j
"P

l

0

yN
j
(x)my

j
(x) dx"1, (33)

where x
e,t

is the location of the tth spring}damper}mass system with damping
coe$cient C

e,t
as shown in Figure 3 and u

j
is the jth natural frequency of the
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unconstrained beam. It is noted that equation (32) is available for the cases of both
the single spring}damper}mass system (i.e., r"1) and the multiple spring}damper}
mass systems (i.e., r'1).

Now, one is only required to guess the value of u6
I

and then to calculate the
associated value of u6

R
from equation (30). If this pair of values for u6

R
and u6

I
satisfy

equation (29), then they represent one of the eigenvalues of the constrained beam;
otherwise, iteration with a new pair of values for u6

R
and u6

I
is required.

3. EQUATION OF MOTION FOR A UNIFORM BEAM CARRYING ANY
NUMBER OF SPRING}DAMPER}MASS SYSTEMS

For the uniform beam carrying r spring}damper}mass systems as shown in
Figure 3, from equation (24b) one may infer the equation of motion for the
constrained beam to be

u2
j
qN
j
!

r
+

t/1

(k
e+,t

#u6
R
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e+,t
)
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+
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(x
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)qN
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r
+
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(u6
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)
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+
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(x

e,t
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k
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e,t
)qN

j
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R
!u6 2

I
)qN

j
!i12u6

R
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I
qN
j
, j"1, 2,2, n@. (34)

Equating the real parts on the both sides of the last equation yields

u2
j
qN
j
!

r
+

t/1

(k
e+,t

#u6
R
C

e+,t
)

n{
+
k/1

yN
k
(x

e,t
)yN

k
(x

e,t
)qN

j

"!(u6 2
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!u6 2

I
)qN

j
, j"1, 2,2, n@. (35a)
Figure 3. A uniform cantilever beam carrying r spring}damper}mass systems.
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Similarly, considering the equality of the imaginary parts of equation (34), one
obtains

r
+

t/1

(u6
I
C

e+,t
)

n{
+
k/1

yN
k
(x

e,t
)yN

k
(x

e,t
)qN

j
"2u6

R
u6

I
qN
j
, j"1, 2,2, n@. (35b)

The subsequent derivation based on equation (35b) is given in Appendix B. Writing
equation (35a) in matrix form gives

[AI ]MqN
j
N"(u6 2

I
!u6 2

R
)[BI ]MqN

j
N, (36)

where

[AI ]
n{]n{

"
n{]n{

#[AI @]
n{]n{

, (37a)

[BI ]
n{]n{

"
n{]n{

"v1 121 1y
n{]n{

, (37b)

[AI @]
n{]n{

"!

r
+

t/1

(k
e+,t

#u6
R
C

e+,t
)[yN

j
(x

e,t
)]

n{]n{
, (37c)

[yN
j
(x

e,t
)]

n{]n{
"MyN

j
(x

e,t
)N

n{]1
MyN

j
(x

e,t
)NT

n{]1
, (37d)

MyN
j
(x

e,t
)N

n{]1
"MyN

1
(x

e,t
)yN

2
(x

e,t
)2yN

n{
(x

e,t
)N

n{]1
, (37e)

MqN
j
N
n{]1

"MqN
j1

qN
j2
2qN

jn{
N
n{]1

, (37f )

n{]n{
"vu2

1
u2

2
2u2

n{
y. (37g)

The values of k
e+,t

and C
e+,t

appearing in equation (37c), are given by [cf. equations
(16a)}(16f )]

k
e+,t

"C!
E

1tG1t#F
1tH1t

G2
1t#H2

1t
#

F
1tG1t!E

1tH1t

G2
1t#H2

1t A
u6

R
u6

I
BD, (38a)

C
e+,t

"C!
F
1tG1t!E

1tH1t

G2
1t#H2

1t A
1
u6

I
BD, (38b)

where

E
1t"m

e,t
[(u6 2

R
!u6 2

I
) (C

e,t
u6

R
#k

e,t
)!2C

e,t
u6

R
u6 2

I
], (39a)

F
1t"m

e,t
[2u6

R
u6

I
(C

e,t
u6

R
#k

e,t
)#C

e,t
u6

I
(u6 2

R
!u6 2

I
)], (39b)

G
1t"[m

e,t
(u6 2

R
!u6 2

I
)#C

e,t
u6

R
#k

e,t
], (39c)

H
1t"[2u6

R
u6

I
m

e,t
#C

e,t
u6

I
], (39d)
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After rewriting equation (36) in the form of equation (28), one may use the same
technique employed to solve equation (28) to treat the problem.

4. FORMULATION FOR FORCED VIBRATION OF A CONSTRAINED BEAM

If the constrained beam shown in Figure 4 is subjected to an external exciting
force

P(t)"PM sin(X
p
t), (40)

then the generalized co-ordinate q
j
(t) will take the form

q
j
(t)"

n{
+
j/1

qN
j
e*1 Xpt, (41)

where qN
j

is the amplitude of q
j
(t) and X

p
is the exciting frequency.

Substituting equation (41) into equation (5) gives

y
e
(t)"

n{
+
j/1
P

l

0

yN
j
(x

e
)e*1Xpt dx ) qN

j
(42a)

and

yR
e
(t)"i1X

p
y
e
(t). (42b)

From equations (3) and (42a), one sees that the particular solution of zt(t) takes the
form

zt (t)"zN t
n{
+
j/1

qN
j
e*11Xpt, (43)

where zN t is the amplitude of zt(t).
The substitution of equations (42)}(43) into equation (3) yields

zt"
N

1
!i1N

2
D

y
e
(t), (44)

where

D"(k
e,t

!m
e,t

X2
p
)2#(C

e,t
X

p
)2, (45a)

N
1
"k

e,t
(k

e,t
!m

e,t
X2

p
)#(C

e,t
X

p
)2, (45b)

N
2
"C

e,t
m

e,t
X3

p
. (45c)
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From equations (43), (44) and (2) one has

F
e
(t)"m

e,t
X2

p A
N

1
!i1N

2
D By

e
(t)

"

r
+

t/1

kI
e+,t

y
e
(t)#

r
+

t/1

CI
e+,t

yR
e
(t), (46)

where

kI
e+,t

"

m
e,t

X2
p
[k

e,t
(k

e,t
!m

e,t
X2

p
)#(C

e,t
X

p
)2]

(k
e,t

!m
e,t

X2
p
)2#(C

e,t
X

p
)2

, (47a)

CI
e+,t

"!

C
e,t

(m
e,t

X2
p
)2

(k
e,t

!m
e,t

X2
p
)2#(C

e,t
X

p
)2

. (47b)

It is evident that kI
e+,t

and CI
e+,t

, respectively, represent the e!ective spring constant
and the e!ective damping coe$cient of the tth spring}damper}mass system at
exciting frequency X

p
.

By means of the steps similar to those used to arrive at equations (23) and (21c)
one can obtain the following equation of motion for the constrained beam shown in
Figure 4:

qK
j
(t)#u2

j
q
j
(t)"

r
+

t/1

kI
e+,t

n{
+
k/1

yN 2
k
(x

e,t
)qN

j
(t)

#

r
+

t/1

CI
e+,t

n{
+
k/1

yN 2
k
(x

e,t
)qR

j
(t)

#PM ) sin(X
p
t)yN

j
(l), j"1, 2,2, n@. (48)
Figure 4. A constrained uniform cantilever beam subjected to an external concentrated force
P(t)"PM sin(X

p
t).
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Rewriting the last equation in matrix form gives

[MI ]MqK (t)N
n{]1

#[CI ]MqR (t)N
n{]1

#[KI ]Mq(t)N
n{]1

"MF(t)N
n{]1

, (49)

where

[MI ]
n{]n{

"
n{]n{

"v1 121 1y
n{]n{

, (50a)

[CI ]
n{]n{

"

r
+

t/1

CI
e+,t

[yN (x
e,t

)]
n{]n{

, (50b)

[KI ]
n{]n{

" !

r
+

t/1

kI
e+,t

[yN
k
(x

e,t
)]

n{]n{
, (50c)

[yN
k
(x

e,t
)]

n{]n{
"MyN

k
(x

e,t
)N

n{]1
MyN (x

e,t
)NT

n{]1
, (50d)

MyN
k
(x

e,t
)N

n{]1
"MyN

1
(x

e,t
)yN

2
(x

e,t
)2yN

n{
(x

e,t
)N

n{]1
, (50e)

MF(t)N
n{]1

"M0 02PM sin(X
p
t)yN (l)N

n{]1
, (50f )

MqK (t)N
n{]1

"MqK
1
(t)qK

2
(t)2qK

n{
(t)N

n{]1
, (50g)

MqR (t)N
n{]1

"MqR
1
(t)qR

2
(t)2qR

n{
(t)N

n{]1
, (50h)

Mq (t)N
n{]1

"Mq
1
(t)q

2
(t)2q

n{
(t)N

n{]1
. (50i)

Equation (49) is a standard form for the equation of motion of a forced vibration
system. By using the Newmark direct integration method [27], one may obtain
the generalized co-ordinates q

j
(t), j"1}n@, and substituting the values of q

j
(t)

into equation (4) will determine the forced vibration responses of the constrained
beam.

5. DETERMINING THE EIGENVALUES OF A CONSTRAINED BEAM
WITH THE FEM

In order to con"rm the reliability of the presented theory, all the results obtained
from the ANCM were checked by using the conventional "nite element method
(FEM). For the beam element carrying two spring}damper}mass systems at the
two nodes (A and B) as shown in Figure 5, the element mass matrix [M](e), damping



Figure 5. A beam element with two spring}damper}mass systems at the two nodes A and B.
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matrix [C](e) and sti!ness matrix [K](e) are given by

[M](e)"

M
11

M
12

0 M
14

M
15

0

M
21

M
22

0 M
24

M
25

0

0 0 m
e,p

0 0 0

M
41

M
42

0 M
44

M
45

0

M
51

M
52

0 M
54

M
55

0

0 0 0 0 0 m
e,q

, (51a)

[C](e)"

c
e,p

0 !c
e,p

0 0 0

0 0 0 0 0 0

!c
e,p

0 c
e,p

0 0 0

0 0 0 c
e,q

0 !c
e,q

0 0 0 0 0 0

0 0 0 !c
e ,q

0 c
e,q

, (51b)

[K](e)"

K
11
#k

e,p
K

12
!k

e,p
K

14
K

15
0

K
21

K
22

0 K
24

K
25

0

!k
e,p

0 k
e,p

0 0 0

K
41

K
42

0 K
44
#k

e,q
K

45
!k

e,q
K

51
K

52
0 K

54
K

55
0

0 0 0 !k
e,q

0 k
e,q

, (51c)

In the last equations, k
e, s

, c
e, s

and m
e,s

(s"p, q) are the spring constants,
damping coe$cients and concentrated masses of the two spring}damper}mass
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systems, respectively, as shown in Figure 5, while K
ij

and M
ij

(i, j"1, 2, 4, 5) are the
coe$cients of the sti!ness matrix and mass matrix for an unconstrained beam
element [24] respectively.

Assembling all the element property matrices ([M](e), [C](e) and [K](e)) and
imposing the prescribed boundary conditions at the two ends of the beam will
determine the equation of motion for a beam carrying any number of
spring}damper}mass systems:

[M]M;G N#[C]M;Q N#[K]M;N"0, (52)

where [M], [C] and [K] are the overall mass, damping and sti!ness matrices, while
M;G N, M;Q N and M;N are the overall node acceleration, velocity and displacement
vectors for the constrained beam, respectively.

For convenience of solving the problem, equation (52) is rewritten in the form
[19, 25]

C
[0]
[M]

[M]
[C]D

2n]2n
G
;G
;Q H

2n]1

#C
![M]

[0]
[0]
[K]D

2n]2n
G
;Q
;H

2n]1

"0 (53a)

or

M/0 N![KK ]M/N"0, (53b)

where

M/N"G
;Q
;H , (54a)

![KK ]"C
![KK

11
]

[I]
![KK

12
]

[0] D, (54b)

[KK
11

]"[M]~1[C], [KK
12

]"[M]~1[K]. (54c)

In equation (54b), [I] is a unit matrix of order n, where n is the total d.o.f.s of the
constrained beam after considering the constraints for the boundary conditions.

For the &&damped'' harmonic free vibration, one has

M/N"MUNect. (55)

From equations (53b) and (55) one obtains the eigenequation

(c[IK ]![KK ])MUN"0 (56)

where [IK ] is a unit matrix of order 2n. Here the EISPACK computer package of
MATLAB [26] was used to solve equation (56). The eigenvalues of equation (56)



BEAM CARRYING MASSES WITH DAMPERS 565
are complex numbers, their real parts represent the decaying parameters of
vibrations and the imaginary parts represent the natural frequencies of the
constrained beam.

6. NUMERICAL RESULTS AND DISCUSSIONS

6.1. RELIABILITY OF THE THEORY AND THE COMPUTER PROGRAM

Since the only pertinent literature that one may "nd is a uniform cantilever beam
carrying a dashpot located at m

1
"x

e,1
/l"0)2 [14] and m

1
"1)0 [11],

respectively, these two special cases (cf. Figure 6) were used to check the reliability
of the theory presented and the computer program developed for this paper.

The given data for the "rst example are: beam length l"1)0 m, mass per unit
length mN "0)675 kg/m, Young's modulus E"7]1010 N/m2, and moment of
inertia of cross-sectional area I"5)20833]10~10 m4. Four kinds of dashpots
located at m

1
"x

e,1
/l"0)2 with damping coe$cients C

e,1
"5)0, 6)0, 8)0 and

10)0 N s/m, were studied. The results are shown in Table 1. From the table one sees
that the eigenvalues u6

j
"u6

jR
$i1 u6

jI
, j"1}5, obtained from the FEM and the

ANCM and those from reference [14] are in good agreement.
The given data for the second example [11] are the same as those for the "rst one;

the only di!erence is that the dashpot is located at m
1
"x

e,1
/l"1)0 and the

dimensionless damping parameters for the dashpot are: C
e,1

) l/JmN EI"1)71, 2)49,
5)51 and 6)16, respectively. The dimensionless eigenvalue coe$cients u6 *

j
"

(u6
jR

/a)$i1 (u6
jI
/a) are shown in Table 2, where a"JEI/(mN l4). Since the natural

frequencies of a uniform cantilever beam without damping is given by
u

j
"(b

j
l)2JEI/(mN l4), a"JEI/(mN l4)"u

j
/(b

j
l)2 or u

j
"(b

j
l)2a, where b

j
l are

the roots of the frequency equation cosb
j
l coshb

j
l#1"0 ( j"1, 2,2). From

Table 2 one sees that the values of u6 *
j

obtained from the FEM and the ANCM are
also in good agreement with those obtained from reference [11]. It is believed that
all the above-mentioned facts may be the evidence that the theory and the
computer program for this paper are reliable. Besides, Table 1 and 2 reveal that the
magnitudes of the damping coe$cients of the dashpot, C

e,1
, have little in#uence on

the natural frequencies of the constrained beam, u6
jI

. These results also agree with
those of references [11, 14].
Figure 6. A uniform cantilever beam carrying a dashpot at m
1
"x

e,1
/l.



TABLE 1

¹he lowest ,ve eigenvalues uN
j
"uN

jR
#i1 uN

jI
( j"1}5) for a uniform cantilever beam carrying a dashpot at m

1
"x

e,1
/l"0)2

Damping
coe$cients of Eigenvalues u6

j
"u6

jR
#i1 u6

jIdashpot
C

e,1
(N s/m) Methods u6

1
u6

2
u6

3
u6

4
u6

5

5)0 FEM !0)060437 !1)34301 !5)42172 !8)45298 !6)51107
$i125)8405 $i1161)956 $i1453)570 $i1889)27 $i11472)36

ANCM !0)060437 !1)34284 !5)41613 !8)41973 !6)44152
#i125)8405 #i1161)951 #i1453)447 #i1888)41 #i11468)63

Reference [14] !0)060437 !1)34284 !5)41614 !8)41976 !6)44152
$i125)8405 $i1161)951 $i1453)448 $i1888)41 $i11468)63

6)0 FEM !0)0725248 !1)61167 !6)50734 !10)1450 !7)81185
$i125)8406 $i1161)963 $i1453)579 $i1889)22 $i11472)29

ANCM !0)0725244 !1)61145 !6)50062 !10)1047 !7)72750
#i125)8406 #i1161)957 #i1453)454 #i1888)35 #i11468)55

Reference [14] !0)0725243 !1)61146 !6)50064 !10)1047 !7)72747
$i125)8406 $i1161)956 $i1453)456 $i1888)35 $i11468)55

8)0 FEM !0)0966995 !2)1490 !8)68081 !13)5315 !10)4109
$i125)8408 $i1161)977 $i1453)604 $i1889)09 $i11472)10

ANCM !0)0966992 !2)1488 !8)67181 !13)4764 !10)2953
#i125)8409 #i1161)971 #i1453)473 #i1888)20 #i11468)33

Reference [14] !0)0966991 !2)1488 !8)67184 !13)4765 !10)2953
$i125)8408 $i1161)971 $i1453)474 $i1889)20 $i11468)33

10)0 FEM !0)120874 !2)68662 !10)8581 !16)9223 !13)0058
$i125)8412 $i1161)996 $i1453)637 $i1888)92 $i11471)85

ANCM !0)120874 !2)68631 !10)8469 !16)8512 !12)8562
#i125)8412 #i1161)989 #i1453)497 #i1888)02 #i11468)05

Reference [14] !0)120874 !2)68631 !10)8468 !16)8512 !12)8562
$i125)8412 $i1161)989 $i1453)498 $i1888)00 $i11468)05

Note: i1"J!1.
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TABLE 2

¹he lowest ,ve dimensionless eigenvalue coe.cients uN *
j
"(uN

jR
/a)#i1 (uN

jI
/a) ( j"1}5) for a uniform cantilever beam carrying

a dashpot at m
1
"x

e,1
/l"1)0

Dimensionless
damping Dimensionless eigenvalue coe$cients

parameters for u6 *
j
"(u6

jR
/a)#i1 (u6

jI
/a)

the dashpot
C

e,1
l/JmN EI Methods u6 *

1
u6 *

2
u6 *

3
u6 *

4
u6 *

5

1)171 FEM !2)47885 !2)29006 !2)32097 !2)33713 !2)35545
$i12)6354 $i121)4844 $i161)3831 $i1120)7770 $i1200)1731

ANCM !2)47721 !2)28606 !2)31256 !2)31901 !2)31511
#i12)6353 #i121)4782 #i161)3501 #i1120)6250 #i1199)5900

Reference [11] !2)471
#i12)625 * * * *

2)49 FEM !4)14824 !4)72382 !4)85908 !4)93890
* $i119)3892 $i160)1910 $i1119)9218 $i1199)4997

ANCM !4)11912 !4)66253 !4)75188 !4)72574
* #i119)3863 #i160)1154 #i1119)6600 #i1198)6770

Reference [11] !4)66
* * #i160)24 * *

5)51 FEM !2)70129 !7)04740 !9)13566 !10)00131
* $i116)0830 $i155)1057 $i1115)7391 $i1196)1363

ANCM !2)69053 !6)76711 !8)38616 !8)52633
* #i116)1112 #i155)1725 #i1115)4250 #i1194)8900

Reference [11] !7)10
* * #i155)42 * *

6)16 FEM !2)41194 !6)82727 !9)56931 !10)80992
* $i115)9308 $i154)1654 $i1114)5848 $i1195)1213

ANCM !2)40332 !6)55258 !8)66828 !9)95540
* #i115)9584 #i154)2898 #i1114)377 #i1193)9450

Reference [11] !2)404
* #i115)95 * * *

Note: i1"J!1, a"JEI/(mN l4).
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Figure 7. A uniform cantilever beam carrying three &&identical'' spring}damper}mass systems.
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6.2. EIGENVALUES FOR A CANTILEVER BEAM WITH &&IDENTICAL'' SPRING}DAMPER}MASS
SYSTEMS

Figure 7 shows a uniform cantilever beam carrying three &&identical'' spring}
damper}mass systems located at m

1
"0)1, m

2
"0)5 and m

3
"0)9, respectively,

where mt"x
e,t

/l. The physical properties of the three spring}damper}mass
systems are: k

e,t
"0)1 N/m, C

e,t
"0)1 N s/m and m

e,t
"0)1 kg, for t"1, 2, 3. The

given data for the uniform cantilever beam are the same as those of the last two
examples: length l"1)0 m, mass per unit length mN "0)675 kg/m, Young's modulus
E"7]1010 N/m2, moment of inertia of the cross-sectional area I"5)20833]
10~10 m4. The lowest "ve eigenvalues u6

j
"u6

jR
$i1 u6

jI
( j"1}5), obtained from the

conventional FEM and those from the ANCM, are listed in Table 3. From the table
one sees that the lowest "ve eigenvalues obtained from the two methods are also in
good agreement.

If all the situations are kept unchanged except that two additional spring}damper}
mass systems are placed on the cantilever beam located at m

2
"0)3 and m

4
"0)7,

respectively, then the lowest "ve eigenvalues of the constrained beam will be as
shown in Table 4. From Tables 3 and 4 one "nds that the values of u6

jI
decrease,

while those of u6
jR

increase. In other words, the damped natural frequencies
of the cantilever beam carrying &&"ve'' spring}damper}mass systems are lower
than those carrying &&three'' systems, while the damping e!ect of the former is larger
than that of the latter. These are the reasonable results; because the physical
properties of each spring}damper}mass system are kept unchanged, the total mass
and the total damping strength of the cantilever beam with &&"ve''
spring}damper}mass systems will be larger than those of the cantilever beam with
&&three'' systems, and the natural frequencies of a uniform cantilever beam are
inversely proportional to the square root of the mass, while the damping e!ect of
a vibrating system is directly proportional to the magnitude of the damping
strength (or coe$cient).



TABLE 3

¹he lowest ,ve eigenvalues of a uniform cantilever beam with three 00identical11 spring}damper}mass systems as shown in Figure 7

Locations of the
spring}damper}mass
systems mt"x

e,t
/l Eigenvalues u6

j
"u6

jR
$i1 u6

jI
CPU
time

m
1

m
2

m
3

Methods u6
1

u6
2

u6
3

u6
4

u6
5

(s)

0)1 0)5 0)9 FEM !0)255517 !0)235258 !0)031093 !0)194021 !0)112559 22)18
$i125)8292 $i1161)9419 $i1453)5472 $i1889)3919 $i11472)531

ANCM !0)255514 !0)235231 !0)031062 !0)193278 !0)111365 5)07
#i125)8402 #i1161)9419 #i1453)4375 #i1888)5532 #i11468)839

Note: i1"J!1.

TABLE 4

¹he lowest ,ve eigenvalues of a uniform cantilever beam with ,ve 00identical11 spring}damper}mass systems

Locations of the
spring}damper}mass
systems mt"x

e,t
/l Eigenvalues u6

j
"u6

jR
$i1 u6

jI
CPU
time

m
1

m
2

m
3

m
4

m
5

Methods u6
1

u6
2

u6
3

u6
4

u6
5

(s)

0)1 0)3 0)5 0)7 0)9 FEM !0)364873 !0)347314 !0)329531 !0)297189 !0)141261 25)02
$i125)8236 $i1161)9411 $i1453)5465 $i1889)3918 $i11472)532

ANCM !0)364350 !0)346741 !0)328149 !0)295564 !0)139608 6)24
#i125)8034 #i1161)6921 #i1451)9897 #i1887)0687 #i11467)369

Note: i1"J!1.

B
E

A
M

C
A

R
R

Y
IN

G
M

A
S
S
E

S
W

IT
H

D
A

M
P

E
R

S
569



570 J.-S. WU AND D.-W. CHEN
6.3. EIGENVALUES FOR A STEPPED CANTILEVER BEAM WITH &&IDENTICAL''
SPRING}DAMPER}MASS SYSTEMS

All the given data for the present example are the same as those for the last
example, the only di!erence is to replace the &&uniform'' beam by the &&stepped''
beam as shown in Figure 8. The physical properties for the stepped cantilever beam
are: cross-sectional areas A

1
"2)5]10~4 m2, A

2
"3)6]10~4 m2, A

3
"4)9]

10~4 m2, A
4
"6)4]10~4 m2 and A

5
"8)1]10~4 m2, moments of inertia of

cross-sectional areas I
1
"5)21]10~10 m4, I

2
"1)08]10~9 m4, I

3
"2)001]

10~9 m4, I
4
"3)413]10~9 m4, I

5
"5)4675]10~9 m4. The lowest "ve eigenvalues

u6
j
"u6

jR
$i1 u

jI
( j"1}5), obtained from the conventional FEM and those from

the quasiANCM are listed in Table 5. From the table one sees that the lowest "ve
eigenvalues obtained from the two methods are in good agreement.

If all the situations are kept unchanged except that two additional spring}
damper}mass systems are placed on the stepped cantilever beam located at m

2
"0)3

and m
4
"0)7, respectively, then the lowest "ve eigenvalues of the constrained beam

will be as shown in Table 6. From Tables 5 and 6 one "nds that the values of u6
jI

decrease, while those of u6
jR

increase. The trend for the in#uence of total numbers of
the spring}damper}mass systems on the eigenvalues of a &&stepped'' constrained beam
is the same as that of a &&uniform'' beam studied in the last subsection. It is noted that
the natural frequencies and normal mode shapes of the stepped beam required by the
ANCM are obtained numerically because the closed-form solutions are not available
for the stepped beams. Hence the ANCM is called quasiANCM in this paper.

6.4. EIGENVALUES FOR A CANTILEVER BEAM WITH &&ARBITRARY'' SPRING}DAMPER}MASS
SYSTEMS

The present example is the same as that shown in Figure 7, the only di!erence
being that the magnitudes of the spring constants k

e,t
, the damping coe$cients
Figure 8. A stepped cantilever beam carrying three &&identical'' spring}damper}mass systems.



TABLE 5

¹he lowest ,ve eigenvalues of a 00stepped11 cantilever beam with three 00identical11 spring}damper}mass systems as shown in Figure 8

Locations of the
spring}damper}mass
systems mt"x

e,t
/l Eigenvalues u6

j
"u6

jR
$i1 u6

jI
CPU
time

m
1

m
2

m
3

Methods u6
1

u6
2

u6
3

u6
4

u6
5

(s)

0)1 0)5 0)9 FEM !0)219249 !0)168897 !0)016887 !0)077428 !0)101988 23)18
$i163)9908 $i1261)7067 $i1644)2109 $i11213)456 $i11969)396

quasi !0)219374 !0)168916 !0)016888 !0)077427 !0)101990 5)54
ANCM #i164)02750 #i1261)7350 #i1644)2150 #i11213)461 #i11969)401

Note: i1"J!1.

TABLE 6

¹he lowest ,ve eigenvalues of a 00stepped11 cantilever beam with ,ve 00identical11 spring}damper}mass systems

Locations of the
spring}damper}mass
systems mt"x

e,t
/l Eigenvalues u6

j
"u6

jR
$i1 u6

jI
CPU
time

m
1

m
2

m
3

m
4

m
5

Methods u6
1

u6
2

u6
3

u6
4

u6
5

(s)

0)1 0)3 0)5 0)7 0)9 FEM !0)300158 !0)215841 !0)167469 !0)120099 !0)162021 25)02
$i163)9892 $i1261)7065 $i1644)2106 $i11213)456 $i11969)396

quasi !0)300333 !0)215858 !0)167467 !0)120076 !0)162007 6)24
ANCM #i164)0259 #i1261)7281 #i1644)2021 #i11213)214 #i11969)234

Note: i1"J!1.
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TABLE 7

¹he lowest ,ve eigenvalues of a uniform cantilever beam with three 00arbitrary11 spring}damper}mass systems

Locations of the
spring}damper}mass
systems mt"x

e,t
/l Eigenvalues u6

j
"u6

jR
$i1 u6

jI
CPU
time

m
1

m
2

m
3

Methods u6
1

u6
2

u6
3

u6
4

u6
5

(s)

0)1 0)5 0)9 FEM !0)366055 !0)274712 !0)031121 !0)172332 !0)082271 22)18
$i125)8236 $i1161)9415 $i1453)5472 $i1889)3919 $i11472)531

ANCM !0)366605 !0)274386 !0)031002 !0)171415 !0)081274 5)07
#i125)8769 #i1161)7655 #i1452)1367 #i1887)2157 #i11467)517
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C
e,t

and the concentrated masses m
e,t

, t"1, 2, 3, are arbitrary. However, for
convenience of comparison, the summation values of k

e,t
, C

e,t
and m

e,t
of the

present three spring}damper}mass systems are kept the same as those of Figure 7
(see section 6.2) respectively. The physical properties of the present three
spring}damper}mass systems are: k

e,1
"0)05, k

e,2
"0)1, k

e,3
"0)15 N/m;

m
e,1

"0)05, m
e,2

"0)1, m
e,3

"0)15 kg; C
e,1

"0)05, C
e,2

"0)1, C
e,3

"0)15 N s/m.
The lowest "ve eigenvalues of the present constrained beam are listed in Table 7.
From Tables 7 and 3 one "nds that the real parts of the lowest "ve eigenvalues
of the present constrained beam are considerably di!erent from those of the
constrained beam shown in Figure 7 in spite of the fact that the summation
values of k

e,t
, C

e,t
and m

e,t
, t"1, 2, 3, of the present example are exactly equal to

those of Figure 7. It is evident that the distributions of k
e,t

, C
e,t

and m
e,t

, t"1, 2,
3, along the cantilever beam, in#uence the eigenvalues of the constrained beam
signi"cantly. It is noted that the magnitudes of the three spring}damper}mass
systems in the present example are arbitrary while those shown in Figure 7 are
identical.

From the "nal columns of Tables 3}7 one "nds that the CPU time required by
the ANCM (or quasiANCM) is only about a quarter of that required by the FEM.

6.5. FORCED VIBRATION ANALYSES

The forced vibration system studied here is shown in Figure 4. All physical
properties for the cantilever beam and the three &&identical'' spring}damper}mass
systems are exactly the same as those for Figure 7 (cf. section 6.2 and Table 3). The
exciting force located at the free end is P(t)"10 sin(X

p
t) N. The time interval is

Dt"0)0035 s, and the initial conditions are y(x, 0)"yR (x, 0)"yK (x, 0)"0.
(i) ¹ime histories: The time histories of the vertical displacements at the free end,

y(l, t) are shown in Figure 9(a) for the case of exciting frequency X
p
"5)0 rad/s and

in Figure 9(b) for the case of X
p
"10)0 rad/s. From the two "gures one "nds that

the time histories obtained from the ANCM (represented by the dashed lines) are in
good agreement with those obtained from the FEM (represented by the solid lines).
The CPU time required by the ANCM is 2)2 s and that required by the FEM is
19)9 s.

(ii) Frequency-response curves: For the cases of damping coe$cients
C

e,t
"0)1 N s/m, t"1, 2, 3, the frequency-response curves for the constrained

beam at the free end are shown in Figure 10, where the ordinate represents the
maximum vertical displacements at the free end Dy (l, t) D

.!9.
, and the abscissa the

exciting frequencies X
p

of the external load. It is noted that the values of X
p

corresponding to the "rst and second humps of each curve are approximately equal
to the "rst and second natural frequencies of the constrained beam, u6

1I
"25)8292

and u6
2I
"161)9419 rad/s respectively. The CPU time required by the ANCM is

44 s and that required by the FEM is 420 s.
(iii) In-uence of damping coe.cients: The damping coe$cients C

e,t
(t"1, 2, 3)

associated with the solid line (**), long dashed line (**) and short dashed line
(} } }) as shown in Figure 10 are 0)1, 0)2, and 0)3 N s/m respectively. It is evident



Figure 9. Time histories of vertical displacements at the free end for a uniform cantilever beam
carrying three &&identical'' spring}damper}mass systems subjected to a tip concentrated force
pN sin(X

p
t)"10 sin(X

p
t) N: (a) X

p
"5)0 rad/s: (b) X

p
"10)0 rad/s; **, by FEM; } } }, by ANCM.
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that the larger the damping coe$cient C
e,t

, the smaller the maximum dynamic
response Dy(l, t) D

.!9.
as it should be, particularly near resonance.

7. CONCLUSIONS

1. The analytical-and-numerical-combined method (ANCM) is available for the
determination of the eigenvalues and of the forced vibration responses of



Figure 10. The frequency-response curves for the uniform cantilever beam carrying three &&identi-
cal'' spring}damper}mass systems subjected to a tip force 10 sin(X

p
t) N as shown in Figure 4: **,

C
e,t

"0)1 Ns/m; **, C
e,t

"0)2 N s/m; } } }, C
e,t

"0)3 Ns/m.
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a uniform beam carrying a number of spring}damper}mass systems. Let
R

t
"t

ANCM
/t

FEM
, where t

ANCM
is the CPU time required by the ANCM and

t
FEM

is that required by the FEM; then the value of R
t
for the forced vibration

analysis is much smaller than that for the free vibration analysis. In other
words, the advantage of ANCM in forced vibration will be much more than
that in free vibration.

2. The e!ective spring constant k
e+

and the e!ective damping coe$cient C
e+

of
a spring}damper}mass system are the two parameters re#ecting the e!ects of
the linear spring constant k

e
, the damping coe$cient C

e
and the concentrated

mass m
e
. For the special case of replacing the spring}damper}mass system by

a dashpot (i.e., k
e
"m

e
"0) or by a linear spring (i.e., C

e
"m

e
"0), the

formulation of this paper is also available.
3. The imaginary parts of the eigenvalues for a beam carrying any number of

spring}damper}mass systems represent the &&damped'' natural frequencies of
the constrained beam, u6

dj
. The in#uence on u6

dj
for the magnitudes of the

damping coe$cients of the dashpots, C
e,t

, is negligible.
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APPENDIX A: IMAGINARY PART FOR THE EQUATION OF MOTION
OF A UNIFORM BEAM WITH A SPRING}DAMPER}MASS SYSTEM

From equation (25b) one has

(u6
I
C

e+
)

n{
+
k/1

yN 2
k
(x

e
)qN

j
"2u6

R
u6

I
qN
j
, j"1, 2,2, n@ (A1)

or in matrix form,

[A]MqN
j
N"2u6

R
u6

I
[B]MqN

j
N, (A2)

where

[B]
n{]n{

"
n{]n{

"v1 12 1 1y
n{]n{

(A3)

[A]
n{]n{

"(u6
I
C

e+
)[yN

j
(x

e
)]

n{]n{
, (A4)

[yN
j
(x

e
)]

n{]n{
"MyN

j
(x

e
)N

n{]1
MyN

j
(x

e
)NT

n{]1
, (A5)

MyN
j
(x

e
)N

n{]1
"MyN

1
(x

e
)yN

2
(x

e
)2yN

n{
(x

e
)N

n{]1
, (A6)

MqN
j
N
n{]1

"MqN
j1

qN
j2
2qN

jn{
N
n{]1

. (A7)

The value of C
e+

appearing in equation (A4) is de"ned by equations (16b)}(16f ).

APPENDIX B: IMAGINARY PART FOR THE EQUATION OF MOTION
OF A UNIFORM BEAM CARRYING ANY NUMBER OF SPRING}DAMPER}

MASS SYSTEMS

From equation (35b) one has

r
+

t/1

(u6
I
C

e+,t
)

n{
+
k/1

yN 2
k
(x

e,t
)qN

j
"2u6

R
u6

I
qN
j
, j"1, 2,2, n@ (B1)

or in matrix form,

[AI ]MqN
j
N"2u6

R
u6

I
[BI ]MqN

j
N, (B2)
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where

[BI ]
n{]n{

"
n{]n{

"v1 12 1 1y
n{]n{

(B3)

[AI ]
n{]n{

"

r
+

t/1

(u6
I
C

e+ ,t
)[yN
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e,t
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MyN
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e
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e
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MqN
j
N
n{]1

"MqN
j1

qN
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2qN

jn{
N
n{]1

. (B7)

The value of C
e+,t

appearing in equation (B4) is de"ned by

C
e+,t

"C!
F

1tG1t!E
1tH1t

G2
1t#H2

1t A
1
u6

I
BD. (B8)

For the values of E
1t , F

1t , G
1t and H

1t one may refer to equations (39a)}(39d).
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